Conformastatic spacetimes

Class of solutions to Einstein's equation in general relativity

Conformastatic spacetimes refer to a special class of static solutions to Einstein's equation in general relativity.

Introduction

The line element for the conformastatic class of solutions in Weyl's canonical coordinates reads[1][2][3][4][5][6]
( 1 ) d s 2 = e 2 Ψ ( ρ , ϕ , z ) d t 2 + e 2 Ψ ( ρ , ϕ , z ) ( d ρ 2 + d z 2 + ρ 2 d ϕ 2 ) , {\displaystyle (1)\qquad ds^{2}=-e^{2\Psi (\rho ,\phi ,z)}dt^{2}+e^{-2\Psi (\rho ,\phi ,z)}{\Big (}d\rho ^{2}+dz^{2}+\rho ^{2}d\phi ^{2}{\Big )}\;,}
as a solution to the field equation
( 2 ) R a b 1 2 R g a b = 8 π T a b . {\displaystyle (2)\qquad R_{ab}-{\frac {1}{2}}Rg_{ab}=8\pi T_{ab}\;.}
Eq(1) has only one metric function Ψ ( ρ , ϕ , z ) {\displaystyle \Psi (\rho ,\phi ,z)} to be identified, and for each concrete Ψ ( ρ , ϕ , z ) {\displaystyle \Psi (\rho ,\phi ,z)} , Eq(1) would yields a specific conformastatic spacetime.

Reduced electrovac field equations

In consistency with the conformastatic geometry Eq(1), the electrostatic field would arise from an electrostatic potential A a {\displaystyle A_{a}} without spatial symmetry:[3][4][5]
( 3 ) A a = Φ ( ρ , z , ϕ ) [ d t ] a , {\displaystyle (3)\qquad A_{a}=\Phi (\rho ,z,\phi )[dt]_{a}\;,}
which would yield the electromagnetic field tensor F a b {\displaystyle F_{ab}} by
( 4 ) F a b = A b ; a A a ; b , {\displaystyle (4)\qquad F_{ab}=A_{b\,;a}-A_{a\,;b}\;,}
as well as the corresponding stress–energy tensor by
( 5 ) T a b ( E M ) = 1 4 π ( F a c F b c 1 4 g a b F c d F c d ) . {\displaystyle (5)\qquad T_{ab}^{(EM)}={\frac {1}{4\pi }}{\Big (}F_{ac}F_{b}^{\;\;c}-{\frac {1}{4}}g_{ab}F_{cd}F^{cd}{\Big )}\;.}

Plug Eq(1) and Eqs(3)(4)(5) into "trace-free" (R=0) Einstein's field equation, and one could obtain the reduced field equations for the metric function Ψ ( ρ , ϕ , z ) {\displaystyle \Psi (\rho ,\phi ,z)} :[3][5]

( 6 ) 2 Ψ = e 2 Ψ Φ Φ {\displaystyle (6)\qquad \nabla ^{2}\Psi \,=\,e^{-2\Psi }\,\nabla \Phi \,\nabla \Phi }
( 7 ) Ψ i Ψ j = e 2 Ψ Φ i Φ j {\displaystyle (7)\qquad \Psi _{i}\Psi _{j}=e^{-2\Psi }\Phi _{i}\Phi _{j}}

where 2 = ρ ρ + 1 ρ ρ + 1 ρ 2 ϕ ϕ + z z {\displaystyle \nabla ^{2}=\partial _{\rho \rho }+{\frac {1}{\rho }}\,\partial _{\rho }+{\frac {1}{\rho ^{2}}}\partial _{\phi \phi }+\partial _{zz}} and = ρ e ^ ρ + 1 ρ ϕ e ^ ϕ + z e ^ z {\displaystyle \nabla =\partial _{\rho }\,{\hat {e}}_{\rho }+{\frac {1}{\rho }}\partial _{\phi }\,{\hat {e}}_{\phi }+\partial _{z}\,{\hat {e}}_{z}} are respectively the generic Laplace and gradient operators. in Eq(7), i , j {\displaystyle i\,,j} run freely over the coordinates [ ρ , z , ϕ ] {\displaystyle [\rho ,z,\phi ]} .

Examples

Extremal Reissner–Nordström spacetime

The extremal Reissner–Nordström spacetime is a typical conformastatic solution. In this case, the metric function is identified as[4][5]

( 8 ) Ψ E R N = ln L L + M , L = ρ 2 + z 2 , {\displaystyle (8)\qquad \Psi _{ERN}\,=\,\ln {\frac {L}{L+M}}\;,\quad L={\sqrt {\rho ^{2}+z^{2}}}\;,}

which put Eq(1) into the concrete form

( 9 ) d s 2 = L 2 ( L + M ) 2 d t 2 + ( L + M ) 2 L 2 ( d ρ 2 + d z 2 + ρ 2 d φ 2 ) . {\displaystyle (9)\qquad ds^{2}=-{\frac {L^{2}}{(L+M)^{2}}}dt^{2}+{\frac {(L+M)^{2}}{L^{2}}}\,{\big (}d\rho ^{2}+dz^{2}+\rho ^{2}d\varphi ^{2}{\big )}\;.}

Applying the transformations

( 10 ) L = r M , z = ( r M ) cos θ , ρ = ( r M ) sin θ , {\displaystyle (10)\;\;\quad L=r-M\;,\quad z=(r-M)\cos \theta \;,\quad \rho =(r-M)\sin \theta \;,}

one obtains the usual form of the line element of extremal Reissner–Nordström solution,

( 11 ) d s 2 = ( 1 M r ) 2 d t 2 + ( 1 M r ) 2 d r 2 + r 2 ( d θ 2 + sin 2 θ d ϕ 2 ) . {\displaystyle (11)\;\;\quad ds^{2}=-{\Big (}1-{\frac {M}{r}}{\Big )}^{2}dt^{2}+{\Big (}1-{\frac {M}{r}}{\Big )}^{-2}dr^{2}+r^{2}{\Big (}d\theta ^{2}+\sin ^{2}\theta \,d\phi ^{2}{\Big )}\;.}

Charged dust disks

Some conformastatic solutions have been adopted to describe charged dust disks.[3]

Comparison with Weyl spacetimes

Many solutions, such as the extremal Reissner–Nordström solution discussed above, can be treated as either a conformastatic metric or Weyl metric, so it would be helpful to make a comparison between them. The Weyl spacetimes refer to the static, axisymmetric class of solutions to Einstein's equation, whose line element takes the following form (still in Weyl's canonical coordinates):
( 12 ) d s 2 = e 2 ψ ( ρ , z ) d t 2 + e 2 γ ( ρ , z ) 2 ψ ( ρ , z ) ( d ρ 2 + d z 2 ) + e 2 ψ ( ρ , z ) ρ 2 d ϕ 2 . {\displaystyle (12)\;\;\quad ds^{2}=-e^{2\psi (\rho ,z)}dt^{2}+e^{2\gamma (\rho ,z)-2\psi (\rho ,z)}(d\rho ^{2}+dz^{2})+e^{-2\psi (\rho ,z)}\rho ^{2}d\phi ^{2}\,.}
Hence, a Weyl solution become conformastatic if the metric function γ ( ρ , z ) {\displaystyle \gamma (\rho ,z)} vanishes, and the other metric function ψ ( ρ , z ) {\displaystyle \psi (\rho ,z)} drops the axial symmetry:
( 13 ) γ ( ρ , z ) 0 , ψ ( ρ , z ) Ψ ( ρ , ϕ , z ) . {\displaystyle (13)\;\;\quad \gamma (\rho ,z)\equiv 0\;,\quad \psi (\rho ,z)\mapsto \Psi (\rho ,\phi ,z)\,.}
The Weyl electrovac field equations would reduce to the following ones with γ ( ρ , z ) {\displaystyle \gamma (\rho ,z)} :

( 14. a ) 2 ψ = ( ψ ) 2 {\displaystyle (14.a)\quad \nabla ^{2}\psi =\,(\nabla \psi )^{2}}
( 14. b ) 2 ψ = e 2 ψ ( Φ ) 2 {\displaystyle (14.b)\quad \nabla ^{2}\psi =\,e^{-2\psi }(\nabla \Phi )^{2}}
( 14. c ) ψ , ρ 2 ψ , z 2 = e 2 ψ ( Φ , ρ 2 Φ , z 2 ) {\displaystyle (14.c)\quad \psi _{,\,\rho }^{2}-\psi _{,\,z}^{2}=e^{-2\psi }{\big (}\Phi _{,\,\rho }^{2}-\Phi _{,\,z}^{2}{\big )}}
( 14. d ) 2 ψ , ρ ψ , z = 2 e 2 ψ Φ , ρ Φ , z {\displaystyle (14.d)\quad 2\psi _{,\,\rho }\psi _{,\,z}=2e^{-2\psi }\Phi _{,\,\rho }\Phi _{,\,z}}
( 14. e ) 2 Φ = 2 ψ Φ , {\displaystyle (14.e)\quad \nabla ^{2}\Phi =\,2\nabla \psi \nabla \Phi \,,}

where 2 = ρ ρ + 1 ρ ρ + z z {\displaystyle \nabla ^{2}=\partial _{\rho \rho }+{\frac {1}{\rho }}\,\partial _{\rho }+\partial _{zz}} and = ρ e ^ ρ + z e ^ z {\displaystyle \nabla =\partial _{\rho }\,{\hat {e}}_{\rho }+\partial _{z}\,{\hat {e}}_{z}} are respectively the reduced cylindrically symmetric Laplace and gradient operators.

It is also noticeable that, Eqs(14) for Weyl are consistent but not identical with the conformastatic Eqs(6)(7) above.

References

  1. ^ John Lighton Synge. Relativity: The General Theory, Chapter VIII. Amsterdam: North-Holland Publishing Company (Interscience), 1960.
  2. ^ Hans Stephani, Dietrich Kramer, Malcolm MacCallum, Cornelius Hoenselaers, Eduard Herlt . Exact Solutions of Einstein's Field Equations (2nd Edition), Chapter 18. Cambridge: Cambridge University Press, 2003.
  3. ^ a b c d Guillermo A Gonzalez, Antonio C Gutierrez-Pineres, Paolo A Ospina. Finite axisymmetric charged dust disks in conformastatic spacetimes. Physical Review D 78 (2008): 064058. arXiv:0806.4285[gr-qc]
  4. ^ a b c F D Lora-Clavijo, P A Ospina-Henao, J F Pedraza. Charged annular disks and Reissner–Nordström type black holes from extremal dust. Physical Review D 82 (2010): 084005. arXiv:1009.1005[gr-qc]
  5. ^ a b c d Ivan Booth, David Wenjie Tian. Some spacetimes containing non-rotating extremal isolated horizons. Accepted by Classical and Quantum Gravity. arXiv:1210.6889[gr-qc]
  6. ^ Antonio C Gutierrez-Pineres, Guillermo A Gonzalez, Hernando Quevedo. Conformastatic disk-haloes in Einstein-Maxwell gravity. Physical Review D 87 (2013): 044010. arXiv:1211.4941[gr-qc]

See also