Glasser's master theorem

In integral calculus, Glasser's master theorem explains how a certain broad class of substitutions can simplify certain integrals over the whole interval from {\displaystyle -\infty } to + . {\displaystyle +\infty .} It is applicable in cases where the integrals must be construed as Cauchy principal values, and a fortiori it is applicable when the integral converges absolutely. It is named after M. L. Glasser, who introduced it in 1983.[1]

A special case: the Cauchy–Schlömilch transformation

A special case called the Cauchy–Schlömilch substitution or Cauchy–Schlömilch transformation[2] was known to Cauchy in the early 19th century.[3] It states that if

u = x 1 x {\displaystyle u=x-{\frac {1}{x}}\,}

then

PV F ( u ) d x = PV F ( x ) d x ( Note:  F ( u ) d x ,  not  F ( u ) d u ) {\displaystyle \operatorname {PV} \int _{-\infty }^{\infty }F(u)\,dx=\operatorname {PV} \int _{-\infty }^{\infty }F(x)\,dx\qquad ({\text{Note: }}F(u)\,dx,{\text{ not }}F(u)\,du)}

where PV denotes the Cauchy principal value.

The master theorem

If a {\displaystyle a} , a i {\displaystyle a_{i}} , and b i {\displaystyle b_{i}} are real numbers and

u = x a n = 1 N | a n | x b n {\displaystyle u=x-a-\sum _{n=1}^{N}{\frac {|a_{n}|}{x-b_{n}}}}

then

PV F ( u ) d x = PV F ( x ) d x . {\displaystyle \operatorname {PV} \int _{-\infty }^{\infty }F(u)\,dx=\operatorname {PV} \int _{-\infty }^{\infty }F(x)\,dx.}

Examples

 

  • x 2 d x x 4 + 1 = d x ( x 1 x ) 2 + 2 = d x x 2 + 2 = π 2 . {\displaystyle \int _{-\infty }^{\infty }{\frac {x^{2}\,dx}{x^{4}+1}}=\int _{-\infty }^{\infty }{\frac {dx}{\left(x-{\frac {1}{x}}\right)^{2}+2}}=\int _{-\infty }^{\infty }{\frac {dx}{x^{2}+2}}={\frac {\pi }{\sqrt {2}}}.}

References

  1. ^ Glasser, M. L. "A Remarkable Property of Definite Integrals." Mathematics of Computation 40, 561–563, 1983.
  2. ^ T. Amdeberhnan, M. L. Glasser, M. C. Jones, V. H. Moll, R. Posey, and D. Varela, "The Cauchy–Schlömilch transformation", arxiv.org/pdf/1004.2445.pdf
  3. ^ A. L. Cauchy, "Sur une formule generale relative a la transformation des integrales simples prises entre les limites 0 et ∞ de la variable." Oeuvres completes, serie 2, Journal de l’ecole Polytechnique, XIX cahier, tome XIII, 516–519, 1:275–357, 1823
  • Weisstein, Eric W. "Glasser's Master Theorem". MathWorld.