Newton polytope

In mathematics, the Newton polytope is an integral polytope associated with a multivariate polynomial. It can be used to analyze the polynomial's behavior when specific variables are considered negligible relative to the others. Specifically, given a vector x = ( x 1 , , x n ) {\displaystyle \mathbf {x} =(x_{1},\ldots ,x_{n})} of variables and a finite family ( a k ) k {\displaystyle (\mathbf {a} _{k})_{k}} of pairwise distinct vectors from N n {\displaystyle \mathbb {N} ^{n}} each encoding the exponents within a monomial, consider the multivariate polynomial

f ( x ) = k c k x a k {\displaystyle f(\mathbf {x} )=\sum _{k}c_{k}\mathbf {x} ^{\mathbf {a} _{k}}}

where we use the shorthand notation ( x 1 , , x n ) ( y 1 , , y n ) {\displaystyle (x_{1},\ldots ,x_{n})^{(y_{1},\ldots ,y_{n})}} for the monomial x 1 y 1 x 2 y 2 x n y n {\displaystyle x_{1}^{y_{1}}x_{2}^{y_{2}}\cdots x_{n}^{y_{n}}} . Then the Newton polytope associated to f {\displaystyle f} is the convex hull of the vectors a k {\displaystyle \mathbf {a} _{k}} ; that is

Newt ( f ) = { k α k a k : k α k = 1 & j α j 0 } . {\displaystyle \operatorname {Newt} (f)=\left\{\sum _{k}\alpha _{k}\mathbf {a} _{k}:\sum _{k}\alpha _{k}=1\;\&\;\forall j\,\,\alpha _{j}\geq 0\right\}\!.}

In order to make this well-defined, we assume that all coefficients c k {\displaystyle c_{k}} are non-zero. The Newton polytope satisfies the following homomorphism-type property:

Newt ( f g ) = Newt ( f ) + Newt ( g ) {\displaystyle \operatorname {Newt} (fg)=\operatorname {Newt} (f)+\operatorname {Newt} (g)}

where the addition is in the sense of Minkowski.

Newton polytopes are the central object of study in tropical geometry and characterize the Gröbner bases for an ideal.

See also

  • Toric varieties
  • Hilbert scheme

Sources

  • Sturmfels, Bernd (1996). "2. The State Polytope". Gröbner Bases and Convex Polytopes. University Lecture Series. Vol. 8. Providence, RI: AMS. ISBN 0-8218-0487-1.
  • Monical, Cara; Tokcan, Neriman; Yong, Alexander (2019). "Newton polytopes in algebraic combinatorics". Selecta Mathematica. New Series. 25 (5): 66. arXiv:1703.02583. doi:10.1007/s00029-019-0513-8. S2CID 53639491.
  • Shiffman, Bernard; Zelditch, Steve (18 September 2003). "Random polynomials with prescribed Newton polytopes". Journal of the American Mathematical Society. 17 (1): 49–108. doi:10.1090/S0894-0347-03-00437-5. S2CID 14886953.
  • Linking Groebner Bases and Toric Varieties
  • Rossi, Michele; Terracini, Lea (2020). "Toric varieties and Gröbner bases: the complete Q-factorial case". Applicable Algebra in Engineering, Communication and Computing. 31 (5–6): 461–482. arXiv:2004.05092. doi:10.1007/s00200-020-00452-w.


  • v
  • t
  • e