Integral trigonométrica cardinal

Para integrales simples de funciones trigonométricas, véase Anexo:Integrales de funciones trigonométricas.
Gráfico de la función integral seno hiperbólico Shi(z) en el plano complejo de -2-2i a 2+2i, con colores creados con la función ComplexPlot3D de Mathematica 13.1
Si(x) (azul) y Ci(x) (verde) representadas en el mismo gráfico
Integral seno en el plano complejo, trazado con una variante de coloreado de dominios
Integral coseno en el plano complejo. Obsérvese la rama cortada a lo largo del eje real negativo

En matemáticas, las funciones integrales trigonométricas cardinales son una familia de integrales no elementales que involucran funciones trigonométricas cardinales (aquellas que consisten en dividir una función trigonométrica en una variable, por la propia variable).

Integral senoidal

Artículo principal: Integral senoidal
Gráfica de Si(x) para 0 ≤ x ≤ 8 π
Gráfica de la función integral coseno Ci(z) en el plano complejo de -2-2i a 2+2i con colores creados con la función ComplexPlot3D de Mathematica 13.1

Las diferentes definiciones de la integral seno son:

Si ( x ) = 0 x sin t t d t {\displaystyle \operatorname {Si} (x)=\int _{0}^{x}{\frac {\sin t}{t}}\,dt}
si ( x ) = x sin t t d t   . {\displaystyle \operatorname {si} (x)=-\int _{x}^{\infty }{\frac {\sin t}{t}}\,dt~.}

Téngase en cuenta que el integrando sin ( t ) t {\displaystyle {\frac {\sin(t)}{t}}} es el seno cardinal, y también la función de Bessel esférica de orden cero. Dado que sinc es una función completa par (función holomorfa en todo el plano complejo), Si es entera, impar y para la integral de su definición se puede tomar cualquier recorrido que conecte los puntos extremos.

Por definición, Si(x) es la primitiva de sin x / x cuyo valor es cero en x= 0, y si(x) es la primitiva cuyo valor es cero en x= ∞. Su diferencia está dada por la integral de Dirichlet,

Si ( x ) si ( x ) = 0 sin t t d t = π 2  o  Si ( x ) = π 2 + si ( x )   . {\displaystyle \operatorname {Si} (x)-\operatorname {si} (x)=\int _{0}^{\infty }{\frac {\sin t}{t}}\,dt={\frac {\pi }{2}}\quad {\text{ o }}\quad \operatorname {Si} (x)={\frac {\pi }{2}}+\operatorname {si} (x)~.}

En procesamiento de señales, las oscilaciones de la integral sinusoidal provocan sobrepasos y artefactos de anillo cuando se usa un filtro Sinc, y el dominio de la frecuencia resuena si se usa un filtro sinc truncado como filtro de paso bajo.

La función está relacionada con el fenómeno de Gibbs: si se considera la integral seno como la convolución de la función sinc con la función escalón de Heaviside, esto corresponde a truncar la serie de Fourier, que es la causa del fenómeno de Gibbs.

Integral cosenoidal

Gráfica de Ci(x) para 0 < x ≤ 8π

Las diferentes definiciones de la integral cosenoidal son:

Cin ( x ) = 0 x 1 cos t t d t   , {\displaystyle \operatorname {Cin} (x)=\int _{0}^{x}{\frac {1-\cos t}{t}}\,dt~,}
Ci ( x ) = x cos t t d t = γ + ln x 0 x 1 cos t t d t    para    | Arg ( x ) | < π   , {\displaystyle \operatorname {Ci} (x)=-\int _{x}^{\infty }{\frac {\cos t}{t}}\,dt=\gamma +\ln x-\int _{0}^{x}{\frac {1-\cos t}{t}}\,dt\qquad ~{\text{ para }}~\left|\operatorname {Arg} (x)\right|<\pi ~,}

donde γ ≈ 0.57721566 ... es el Constante de Euler-Mascheroni. Algunos textos utilizan ci en lugar de Ci.

Ci(x) es la primitiva de cos x / x (que se anula cuando x {\displaystyle x\to \infty } ). Las dos definiciones están relacionadas por

Ci ( x ) = γ + ln x Cin ( x )   . {\displaystyle \operatorname {Ci} (x)=\gamma +\ln x-\operatorname {Cin} (x)~.}

Cin es una función completa par. Por esta razón, algunos textos tratan a Cin como la función principal y deducen Ci a partir de Cin.

Integral seno hiperbólico

La integral seno hiperbólico se define como:

Shi ( x ) = 0 x sinh ( t ) t d t . {\displaystyle \operatorname {Shi} (x)=\int _{0}^{x}{\frac {\sinh(t)}{t}}\,dt.}

Está relacionada con la integral seno ordinaria por

Si ( i x ) = i Shi ( x ) . {\displaystyle \operatorname {Si} (ix)=i\operatorname {Shi} (x).}

Integral coseno hiperbólico

Gráfico de la función integral del coseno hiperbólico Chi(z) en el plano complejo de -2-2i a 2+2i, con colores creados con la función ComplexPlot3D de Mathematica 13.1

La integral coseno hiperbólico es:

Chi ( x ) = γ + ln x + 0 x cosh t 1 t d t    para    | Arg ( x ) | < π   , {\displaystyle \operatorname {Chi} (x)=\gamma +\ln x+\int _{0}^{x}{\frac {\cosh t-1}{t}}\,dt\qquad ~{\text{ para }}~\left|\operatorname {Arg} (x)\right|<\pi ~,}

donde γ {\displaystyle \gamma } es la constante de Euler-Mascheroni.

Tiene la siguiente expansión en serie:

Chi ( x ) = γ + ln ( x ) + x 2 4 + x 4 96 + x 6 4320 + x 8 322560 + x 10 36288000 + O ( x 12 ) . {\displaystyle \operatorname {Chi} (x)=\gamma +\ln(x)+{\frac {x^{2}}{4}}+{\frac {x^{4}}{96}}+{\frac {x^{6}}{4320}}+{\frac {x^{8}}{322560}}+{\frac {x^{10}}{36288000}}+O(x^{12}).}

Funciones auxiliares

Las integrales trigonométricas se pueden entender en términos de las llamadas "funciones auxiliares":

f ( x ) 0 sin ( t ) t + x d t = 0 e x t t 2 + 1 d t = Ci ( x ) sin ( x ) + [ π 2 Si ( x ) ] cos ( x )   , g ( x ) 0 cos ( t ) t + x d t = 0 t e x t t 2 + 1 d t = Ci ( x ) cos ( x ) + [ π 2 Si ( x ) ] sin ( x )   . {\displaystyle {\begin{array}{rcl}f(x)&\equiv &\int _{0}^{\infty }{\frac {\sin(t)}{t+x}}\,dt&=&\int _{0}^{\infty }{\frac {e^{-xt}}{t^{2}+1}}\,dt&=&\operatorname {Ci} (x)\sin(x)+\left[{\frac {\pi }{2}}-\operatorname {Si} (x)\right]\cos(x)~,\\g(x)&\equiv &\int _{0}^{\infty }{\frac {\cos(t)}{t+x}}\,dt&=&\int _{0}^{\infty }{\frac {te^{-xt}}{t^{2}+1}}\,dt&=&-\operatorname {Ci} (x)\cos(x)+\left[{\frac {\pi }{2}}-\operatorname {Si} (x)\right]\sin(x)~.\end{array}}}

Usando estas funciones, las integrales trigonométricas se pueden reexpresar como: (cf. Abramowitz y Stegun, p. 232)

π 2 Si ( x ) = si ( x ) = f ( x ) cos ( x ) + g ( x ) sin ( x )   ,  y  Ci ( x ) = f ( x ) sin ( x ) g ( x ) cos ( x )   . {\displaystyle {\begin{array}{rcl}{\frac {\pi }{2}}-\operatorname {Si} (x)=-\operatorname {si} (x)&=&f(x)\cos(x)+g(x)\sin(x)~,\qquad {\text{ y }}\\\operatorname {Ci} (x)&=&f(x)\sin(x)-g(x)\cos(x)~.\\\end{array}}}

Espiral de Nielsen

Espiral de Nielsen

La espiral formado por el gráfico de la expresión paramétrica de si , ci se conoce como espiral de Nielsen:

x ( t ) = a × ci ( t ) {\displaystyle x(t)=a\times \operatorname {ci} (t)}
y ( t ) = a × si ( t ) {\displaystyle y(t)=a\times \operatorname {si} (t)}

La espiral está estrechamente relacionada con las integrales de Fresnel y la clotoide. La espiral de Nielsen tiene aplicaciones en el procesamiento de la visión, la construcción de carreteras y vías y otras áreas de la ingeniería.[1]

Expansión

Se pueden utilizar varias expansiones para la evaluación de integrales trigonométricas, según el rango del argumento.

Serie asintótica (para argumentos amplios)

Si ( x ) π 2 cos x x ( 1 2 ! x 2 + 4 ! x 4 6 ! x 6 ) sin x x ( 1 x 3 ! x 3 + 5 ! x 5 7 ! x 7 ) {\displaystyle \operatorname {Si} (x)\sim {\frac {\pi }{2}}-{\frac {\cos x}{x}}\left(1-{\frac {2!}{x^{2}}}+{\frac {4!}{x^{4}}}-{\frac {6!}{x^{6}}}\cdots \right)-{\frac {\sin x}{x}}\left({\frac {1}{x}}-{\frac {3!}{x^{3}}}+{\frac {5!}{x^{5}}}-{\frac {7!}{x^{7}}}\cdots \right)}
Ci ( x ) sin x x ( 1 2 ! x 2 + 4 ! x 4 6 ! x 6 ) cos x x ( 1 x 3 ! x 3 + 5 ! x 5 7 ! x 7 )   . {\displaystyle \operatorname {Ci} (x)\sim {\frac {\sin x}{x}}\left(1-{\frac {2!}{x^{2}}}+{\frac {4!}{x^{4}}}-{\frac {6!}{x^{6}}}\cdots \right)-{\frac {\cos x}{x}}\left({\frac {1}{x}}-{\frac {3!}{x^{3}}}+{\frac {5!}{x^{5}}}-{\frac {7!}{x^{7}}}\cdots \right)~.}

Estas series son asintóticas y divergentes, aunque pueden usarse para estimaciones e incluso evaluaciones precisas en ℜ(x) ≫ 1.

Serie convergente

Si ( x ) = n = 0 ( 1 ) n x 2 n + 1 ( 2 n + 1 ) ( 2 n + 1 ) ! = x x 3 3 ! 3 + x 5 5 ! 5 x 7 7 ! 7 ± {\displaystyle \operatorname {Si} (x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)(2n+1)!}}=x-{\frac {x^{3}}{3!\cdot 3}}+{\frac {x^{5}}{5!\cdot 5}}-{\frac {x^{7}}{7!\cdot 7}}\pm \cdots }
Ci ( x ) = γ + ln x + n = 1 ( 1 ) n x 2 n 2 n ( 2 n ) ! = γ + ln x x 2 2 ! 2 + x 4 4 ! 4 {\displaystyle \operatorname {Ci} (x)=\gamma +\ln x+\sum _{n=1}^{\infty }{\frac {(-1)^{n}x^{2n}}{2n(2n)!}}=\gamma +\ln x-{\frac {x^{2}}{2!\cdot 2}}+{\frac {x^{4}}{4!\cdot 4}}\mp \cdots }

Estas series son convergentes en cualquier x complejo, aunque para |x| ≫ 1, la serie convergerá lentamente inicialmente, lo que requerirá muchos términos para obtener una alta precisión.

Desarrollo en serie

De la expansión de la serie de Maclaurin del seno

sin x = x x 3 3 ! + x 5 5 ! x 7 7 ! + x 9 9 ! x 11 11 ! + {\displaystyle \sin \,x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+{\frac {x^{9}}{9!}}-{\frac {x^{11}}{11!}}+\cdots }

se obiene:

sin x x = 1 x 2 3 ! + x 4 5 ! x 6 7 ! + x 8 9 ! x 10 11 ! + {\displaystyle {\frac {\sin \,x}{x}}=1-{\frac {x^{2}}{3!}}+{\frac {x^{4}}{5!}}-{\frac {x^{6}}{7!}}+{\frac {x^{8}}{9!}}-{\frac {x^{10}}{11!}}+\cdots }

y de aquí se pasa a:

sin x x d x = x x 3 3 ! 3 + x 5 5 ! 5 x 7 7 ! 7 + x 9 9 ! 9 x 11 11 ! 11 + {\displaystyle \therefore \int {\frac {\sin \,x}{x}}dx=x-{\frac {x^{3}}{3!\cdot 3}}+{\frac {x^{5}}{5!\cdot 5}}-{\frac {x^{7}}{7!\cdot 7}}+{\frac {x^{9}}{9!\cdot 9}}-{\frac {x^{11}}{11!\cdot 11}}+\cdots }

Relación con la integral exponencial del argumento imaginario

La función

E 1 ( z ) = 1 exp ( z t ) t d t    para    ( z ) 0 {\displaystyle \operatorname {E} _{1}(z)=\int _{1}^{\infty }{\frac {\exp(-zt)}{t}}\,dt\qquad ~{\text{ para }}~\Re (z)\geq 0}

se llama integral exponencial. Está estrechamente relacionada con Si y Ci,

E 1 ( i x ) = i ( π 2 + Si ( x ) ) Ci ( x ) = i si ( x ) ci ( x )    para    x > 0   . {\displaystyle \operatorname {E} _{1}(ix)=i\left(-{\frac {\pi }{2}}+\operatorname {Si} (x)\right)-\operatorname {Ci} (x)=i\operatorname {si} (x)-\operatorname {ci} (x)\qquad ~{\text{ para }}~x>0~.}

Como cada función respectiva es analítica, excepto el corte en valores negativos del argumento, el área de validez de la relación debe extenderse (fuera de este rango, en la expresión aparecen términos adicionales que son factores enteros de π).

Los casos de argumento imaginario de la función integroexponencial generalizada son

1 cos ( a x ) ln x x d x = π 2 24 + γ ( γ 2 + ln a ) + ln 2 a 2 + n 1 ( a 2 ) n ( 2 n ) ! ( 2 n ) 2   , {\displaystyle \int _{1}^{\infty }\cos(ax){\frac {\ln x}{x}}\,dx=-{\frac {\pi ^{2}}{24}}+\gamma \left({\frac {\gamma }{2}}+\ln a\right)+{\frac {\ln ^{2}a}{2}}+\sum _{n\geq 1}{\frac {(-a^{2})^{n}}{(2n)!(2n)^{2}}}~,}

que es la parte real de

1 e i a x ln x x d x = π 2 24 + γ ( γ 2 + ln a ) + ln 2 a 2 π 2 i ( γ + ln a ) + n 1 ( i a ) n n ! n 2   . {\displaystyle \int _{1}^{\infty }e^{iax}{\frac {\ln x}{x}}\,dx=-{\frac {\pi ^{2}}{24}}+\gamma \left({\frac {\gamma }{2}}+\ln a\right)+{\frac {\ln ^{2}a}{2}}-{\frac {\pi }{2}}i\left(\gamma +\ln a\right)+\sum _{n\geq 1}{\frac {(ia)^{n}}{n!n^{2}}}~.}

Similarmente,

1 e i a x ln x x 2 d x = 1 + i a [ π 2 24 + γ ( γ 2 + ln a 1 ) + ln 2 a 2 ln a + 1 ] + π a 2 ( γ + ln a 1 ) + n 1 ( i a ) n + 1 ( n + 1 ) ! n 2   . {\displaystyle \int _{1}^{\infty }e^{iax}{\frac {\ln x}{x^{2}}}\,dx=1+ia\left[-{\frac {\pi ^{2}}{24}}+\gamma \left({\frac {\gamma }{2}}+\ln a-1\right)+{\frac {\ln ^{2}a}{2}}-\ln a+1\right]+{\frac {\pi a}{2}}{\Bigl (}\gamma +\ln a-1{\Bigr )}+\sum _{n\geq 1}{\frac {(ia)^{n+1}}{(n+1)!n^{2}}}~.}

Evaluación eficiente

La aproximación de Padé de la serie de Taylor convergente proporciona una forma eficiente de evaluar funciones para argumentos pequeños. Las siguientes fórmulas, dadas por Rowe et al. (2015),[2]​ tienen una precisión mejor que 10−16 para 0 ≤ x ≤ 4,

Si ( x ) x ( 1 4.54393409816329991 10 2 x 2 + 1.15457225751016682 10 3 x 4 1.41018536821330254 10 5 x 6       + 9.43280809438713025 10 8 x 8 3.53201978997168357 10 10 x 10 + 7.08240282274875911 10 13 x 12       6.05338212010422477 10 16 x 14 1 + 1.01162145739225565 10 2 x 2 + 4.99175116169755106 10 5 x 4 + 1.55654986308745614 10 7 x 6       + 3.28067571055789734 10 10 x 8 + 4.5049097575386581 10 13 x 10 + 3.21107051193712168 10 16 x 12 )   Ci ( x ) γ + ln ( x ) + x 2 ( 0.25 + 7.51851524438898291 10 3 x 2 1.27528342240267686 10 4 x 4 + 1.05297363846239184 10 6 x 6       4.68889508144848019 10 9 x 8 + 1.06480802891189243 10 11 x 10 9.93728488857585407 10 15 x 12 1 + 1.1592605689110735 10 2 x 2 + 6.72126800814254432 10 5 x 4 + 2.55533277086129636 10 7 x 6       + 6.97071295760958946 10 10 x 8 + 1.38536352772778619 10 12 x 10 + 1.89106054713059759 10 15 x 12       + 1.39759616731376855 10 18 x 14 ) {\displaystyle {\begin{array}{rcl}\operatorname {Si} (x)&\approx &x\cdot \left({\frac {\begin{array}{l}1-4.54393409816329991\cdot 10^{-2}\cdot x^{2}+1.15457225751016682\cdot 10^{-3}\cdot x^{4}-1.41018536821330254\cdot 10^{-5}\cdot x^{6}\\~~~+9.43280809438713025\cdot 10^{-8}\cdot x^{8}-3.53201978997168357\cdot 10^{-10}\cdot x^{10}+7.08240282274875911\cdot 10^{-13}\cdot x^{12}\\~~~-6.05338212010422477\cdot 10^{-16}\cdot x^{14}\end{array}}{\begin{array}{l}1+1.01162145739225565\cdot 10^{-2}\cdot x^{2}+4.99175116169755106\cdot 10^{-5}\cdot x^{4}+1.55654986308745614\cdot 10^{-7}\cdot x^{6}\\~~~+3.28067571055789734\cdot 10^{-10}\cdot x^{8}+4.5049097575386581\cdot 10^{-13}\cdot x^{10}+3.21107051193712168\cdot 10^{-16}\cdot x^{12}\end{array}}}\right)\\&~&\\\operatorname {Ci} (x)&\approx &\gamma +\ln(x)+\\&&x^{2}\cdot \left({\frac {\begin{array}{l}-0.25+7.51851524438898291\cdot 10^{-3}\cdot x^{2}-1.27528342240267686\cdot 10^{-4}\cdot x^{4}+1.05297363846239184\cdot 10^{-6}\cdot x^{6}\\~~~-4.68889508144848019\cdot 10^{-9}\cdot x^{8}+1.06480802891189243\cdot 10^{-11}\cdot x^{10}-9.93728488857585407\cdot 10^{-15}\cdot x^{12}\\\end{array}}{\begin{array}{l}1+1.1592605689110735\cdot 10^{-2}\cdot x^{2}+6.72126800814254432\cdot 10^{-5}\cdot x^{4}+2.55533277086129636\cdot 10^{-7}\cdot x^{6}\\~~~+6.97071295760958946\cdot 10^{-10}\cdot x^{8}+1.38536352772778619\cdot 10^{-12}\cdot x^{10}+1.89106054713059759\cdot 10^{-15}\cdot x^{12}\\~~~+1.39759616731376855\cdot 10^{-18}\cdot x^{14}\\\end{array}}}\right)\end{array}}}

Las integrales se pueden evaluar indirectamente mediante las funciones auxiliares f ( x ) {\displaystyle f(x)} y g ( x ) {\displaystyle g(x)} , que están definidas por:

: Si ( x ) = π 2 f ( x ) cos ( x ) g ( x ) sin ( x ) {\displaystyle \operatorname {Si} (x)={\frac {\pi }{2}}-f(x)\cos(x)-g(x)\sin(x)}     : Ci ( x ) = f ( x ) sin ( x ) g ( x ) cos ( x ) {\displaystyle \operatorname {Ci} (x)=f(x)\sin(x)-g(x)\cos(x)}
or equivalently
: f ( x ) [ π 2 Si ( x ) ] cos ( x ) + Ci ( x ) sin ( x ) {\displaystyle f(x)\equiv \left[{\frac {\pi }{2}}-\operatorname {Si} (x)\right]\cos(x)+\operatorname {Ci} (x)\sin(x)}     : g ( x ) [ π 2 Si ( x ) ] sin ( x ) Ci ( x ) cos ( x ) {\displaystyle g(x)\equiv \left[{\frac {\pi }{2}}-\operatorname {Si} (x)\right]\sin(x)-\operatorname {Ci} (x)\cos(x)}


Para x 4 {\displaystyle x\geq 4} , las funciones racionales de Padé que se proporcionan a continuación son aproximaciones a f ( x ) {\displaystyle f(x)} y g ( x ) {\displaystyle g(x)} con un error menor que 10−16:[2]

f ( x ) 1 x ( 1 + 7.44437068161936700618 10 2 x 2 + 1.96396372895146869801 10 5 x 4 + 2.37750310125431834034 10 7 x 6       + 1.43073403821274636888 10 9 x 8 + 4.33736238870432522765 10 10 x 10 + 6.40533830574022022911 10 11 x 12       + 4.20968180571076940208 10 12 x 14 + 1.00795182980368574617 10 13 x 16 + 4.94816688199951963482 10 12 x 18       4.94701168645415959931 10 11 x 20 1 + 7.46437068161927678031 10 2 x 2 + 1.97865247031583951450 10 5 x 4 + 2.41535670165126845144 10 7 x 6       + 1.47478952192985464958 10 9 x 8 + 4.58595115847765779830 10 10 x 10 + 7.08501308149515401563 10 11 x 12       + 5.06084464593475076774 10 12 x 14 + 1.43468549171581016479 10 13 x 16 + 1.11535493509914254097 10 13 x 18 ) g ( x ) 1 x 2 ( 1 + 8.1359520115168615 10 2 x 2 + 2.35239181626478200 10 5 x 4 + 3.12557570795778731 10 7 x 6       + 2.06297595146763354 10 9 x 8 + 6.83052205423625007 10 10 x 10 + 1.09049528450362786 10 12 x 12       + 7.57664583257834349 10 12 x 14 + 1.81004487464664575 10 13 x 16 + 6.43291613143049485 10 12 x 18       1.36517137670871689 10 12 x 20 1 + 8.19595201151451564 10 2 x 2 + 2.40036752835578777 10 5 x 4 + 3.26026661647090822 10 7 x 6       + 2.23355543278099360 10 9 x 8 + 7.87465017341829930 10 10 x 10 + 1.39866710696414565 10 12 x 12       + 1.17164723371736605 10 13 x 14 + 4.01839087307656620 10 13 x 16 + 3.99653257887490811 10 13 x 18 ) {\displaystyle {\begin{array}{rcl}f(x)&\approx &{\dfrac {1}{x}}\cdot \left({\frac {\begin{array}{l}1+7.44437068161936700618\cdot 10^{2}\cdot x^{-2}+1.96396372895146869801\cdot 10^{5}\cdot x^{-4}+2.37750310125431834034\cdot 10^{7}\cdot x^{-6}\\~~~+1.43073403821274636888\cdot 10^{9}\cdot x^{-8}+4.33736238870432522765\cdot 10^{10}\cdot x^{-10}+6.40533830574022022911\cdot 10^{11}\cdot x^{-12}\\~~~+4.20968180571076940208\cdot 10^{12}\cdot x^{-14}+1.00795182980368574617\cdot 10^{13}\cdot x^{-16}+4.94816688199951963482\cdot 10^{12}\cdot x^{-18}\\~~~-4.94701168645415959931\cdot 10^{11}\cdot x^{-20}\end{array}}{\begin{array}{l}1+7.46437068161927678031\cdot 10^{2}\cdot x^{-2}+1.97865247031583951450\cdot 10^{5}\cdot x^{-4}+2.41535670165126845144\cdot 10^{7}\cdot x^{-6}\\~~~+1.47478952192985464958\cdot 10^{9}\cdot x^{-8}+4.58595115847765779830\cdot 10^{10}\cdot x^{-10}+7.08501308149515401563\cdot 10^{11}\cdot x^{-12}\\~~~+5.06084464593475076774\cdot 10^{12}\cdot x^{-14}+1.43468549171581016479\cdot 10^{13}\cdot x^{-16}+1.11535493509914254097\cdot 10^{13}\cdot x^{-18}\end{array}}}\right)\\&&\\g(x)&\approx &{\dfrac {1}{x^{2}}}\cdot \left({\frac {\begin{array}{l}1+8.1359520115168615\cdot 10^{2}\cdot x^{-2}+2.35239181626478200\cdot 10^{5}\cdot x^{-4}+3.12557570795778731\cdot 10^{7}\cdot x^{-6}\\~~~+2.06297595146763354\cdot 10^{9}\cdot x^{-8}+6.83052205423625007\cdot 10^{10}\cdot x^{-10}+1.09049528450362786\cdot 10^{12}\cdot x^{-12}\\~~~+7.57664583257834349\cdot 10^{12}\cdot x^{-14}+1.81004487464664575\cdot 10^{13}\cdot x^{-16}+6.43291613143049485\cdot 10^{12}\cdot x^{-18}\\~~~-1.36517137670871689\cdot 10^{12}\cdot x^{-20}\end{array}}{\begin{array}{l}1+8.19595201151451564\cdot 10^{2}\cdot x^{-2}+2.40036752835578777\cdot 10^{5}\cdot x^{-4}+3.26026661647090822\cdot 10^{7}\cdot x^{-6}\\~~~+2.23355543278099360\cdot 10^{9}\cdot x^{-8}+7.87465017341829930\cdot 10^{10}\cdot x^{-10}+1.39866710696414565\cdot 10^{12}\cdot x^{-12}\\~~~+1.17164723371736605\cdot 10^{13}\cdot x^{-14}+4.01839087307656620\cdot 10^{13}\cdot x^{-16}+3.99653257887490811\cdot 10^{13}\cdot x^{-18}\end{array}}}\right)\\\end{array}}}

Véase también

Referencias

  1. Gray (1993). Modern Differential Geometry of Curves and Surfaces.. Boca Raton. pp. 119. 
  2. a b Rowe, B. (2015). «GALSIM: The modular galaxy image simulation toolkit». Astronomy and Computing 10: 121. Bibcode:2015A&C....10..121R. S2CID 62709903. arXiv:1407.7676. doi:10.1016/j.ascom.2015.02.002. 

Bibliografía

  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [junio de 1964]. «Chapter 5». Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first edición). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 231. ISBN 978-0-486-61272-0. LCCN 64060036. MR 0167642. LCCN 6512253. 

Lecturas adicionales

  • Mathar, R.J. (2009). «Numerical evaluation of the oscillatory integral over exp(iπxx1/x between 1 and ∞». arXiv:0912.3844

 [math.CA]. 

  • Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. (2007). «Section 6.8.2 – Cosine and Sine Integrals». Numerical Recipes: The Art of Scientific Computing (3rd edición). New York: Cambridge University Press. ISBN 978-0-521-88068-8. Archivado desde el original|urlarchivo= requiere |url= (ayuda) el 11 de agosto de 2011. Consultado el 21 de enero de 2024. 
  • Sloughter, Dan. «Sine Integral Taylor series proof». Difference Equations to Differential Equations. Archivado desde el original el 5 de noviembre de 2015. Consultado el 21 de enero de 2024. 
  • Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., eds. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press. ISBN 978-0-521-19225-5. MR 2723248.  Se sugiere usar |número-editores= (ayuda)

Enlaces externos

  • http://mathworld.wolfram.com/SineIntegral.html
  • Hazewinkel, Michiel, ed. (2001), «Integral trigonométrica cardinal», Encyclopaedia of Mathematics (en inglés), Springer, ISBN 978-1556080104 .
  • Hazewinkel, Michiel, ed. (2001), «Integral trigonométrica cardinal», Encyclopaedia of Mathematics (en inglés), Springer, ISBN 978-1556080104 .
Control de autoridades
  • Proyectos Wikimedia
  • Wd Datos: Q1094282
  • Wd Datos: Q1094282