解析力学

古典力学
F = d d t ( m v ) {\displaystyle {\boldsymbol {F}}={\frac {\mathrm {d} }{\mathrm {d} t}}(m{\boldsymbol {v}})}
運動の第2法則
歴史(英語版)
分野

静力学  · 動力学 / 物理学における動力学  · 運動学  · 応用力学  · 天体力学  · 連続体力学  · 統計力学

定式化
基本概念

空間 · 時間 · 速度 · 速さ · 質量 · 加速度 · 重力 · 力 · 力積 · トルク / モーメント / 偶力 · 運動量 · 角運動量 · 慣性 · 慣性モーメント · 基準系 · エネルギー · 運動エネルギー · 位置エネルギー · 仕事 · 仮想仕事 · ダランベールの原理

主要項目

剛体 · 運動 · ニュートン力学 · 万有引力 · 運動方程式 · 慣性系 · 非慣性系 · 回転座標系 · 慣性力 · 平面粒子運動力学 · 変位 · 相対速度 · 摩擦 · 単振動 · 調和振動子 · 短周期振動 · 減衰 · 減衰比 · 自転 · 回転 · 円運動 · 非等速円運動 · 向心力 · 遠心力 · 遠心力 (回転座標系) · 反応遠心力 · コリオリの力 · 振り子 · 回転速度 · 角加速度 · 角速度 · 角周波数 · 偏位角度

科学者

ニュートン · ケプラー · ホロックス · オイラー · ダランベール · クレロー · ラグランジュ · ラプラス · ハミルトン · ポアソン

解析力学(かいせきりきがく、: analytical mechanics)とは、一般座標系に対して成り立つ運動方程式を導出して展開される力学体系を言う。その運動方程式はラグランジアンハミルトニアンと呼ばれる座標変換に対して不変な量に変分法最小作用の原理等を適用することで導出される[注 1]

解析力学で用いられる座標変換不変量はふつう相対運動に対しては不変ではないため、座標変換することで運動エネルギーの測定量が変化してしまうような問題は基本的に扱うことができない。

概要

力学の理論は大別して静力学(statics)と動力学(dynamics)からなる。古代より研究されてきた静力学は力の釣り合いの理論であり、力の釣り合いとは、ある力が及ぼす作用に対して別の力が存在し、それらが相殺した結果として生じるものである。静力学の目的は、それら相殺が発生する諸法則を一般的な諸原理に基づいて確立することにあり、それら原理は結局のところ梃子の原理(principle of leverage)、力の合成の原理(principle of composition of forces)、仮想仕事の原理(principle of virtual work)の三つの原理に帰着させることができる[1]。 現代的には、仮想仕事の原理は次のように表される[注 2]

i = 1 n ( X i δ x i + Y i δ y i + Z i δ z i ) = 0 {\displaystyle \sum _{i=1}^{n}(X_{i}\delta x_{i}+Y_{i}\delta y_{i}+Z_{i}\delta z_{i})=0}

一方で動力学は、ガリレオ・ガリレイによって最初の基礎が据えられ[2]、その運動法則を導き出す諸定理はアイザック・ニュートンの『自然哲学の数学的諸原理』(Philosophia Naturalis Principia Mathematica)によって一応の解明がなされた。このとき、ニュートン及びライプニッツは微分積分法を同時に開発したため、物体の運動の法則というものを解析的な方程式に帰着させることができるようになった。そのため、ニュートン以後に力学を扱った数学者たちは、ニュートンの諸定理を一般化した上でそれらを微分的表現に翻訳するようになった[3]。特に、レオンハルト・オイラーは、運動方程式に初めて解析的な表現を与え、さらに定義と論証の連結によって次々に命題を導出する合理的科学として力学体系を提示しようとした[4]

このような中で、ジャン・ル・ロン・ダランベールは、1743年に出版した『動力学概論』(Traité de Dynamique)において、動力学の問題を解くか少なくとも方程式に表すため、物体の運動の法則を釣り合いの法則に帰着させる方法を提案した[5]。これは、つまり動力学を静力学に還元する試みだった(ダランベールの原理)。ここで、ダランベールの原理は現代的には次のように表される[注 3]

i = 1 n { ( F x i m i x i ¨ ) δ x i + ( F y i m i y i ¨ ) δ y i + ( F z i m i z i ¨ ) δ z i } = 0 {\displaystyle \sum _{i=1}^{n}\left\{\left(F_{x_{i}}-m_{i}{\ddot {x_{i}}}\right)\delta x_{i}+\left(F_{y_{i}}-m_{i}{\ddot {y_{i}}}\right)\delta y_{i}+\left(F_{z_{i}}-m_{i}{\ddot {z_{i}}}\right)\delta z_{i}\right\}=0}

数学者、天文学者であったジョゼフ=ルイ・ラグランジュは、1788年に出版した『解析力学』(Mécanique Analytique)において、それまでの静力学及び動力学の歴史を総括した上で、静力学全体がただ一つの基本公式に帰着させることができたのと同様に、動力学全体も一つの一般公式に帰着させることが可能であるとして、『諸物体の運動に関わる諸問題を論ずるための、簡単でもあり、一般的でもある、一つの方法』を導入した[6]が、これが解析力学の始まりである。ラグランジュの言わんとしたことは、上記ダランベールの原理の表式はラグランジアン L というものを導入することで次のように書き換えることができるというものであった。

i = 1 n { ( L x i d d t L x i ˙ ) δ x i + ( L y i d d t L y i ˙ ) δ y i + ( L z i d d t L z i ˙ ) δ z i } = 0 {\displaystyle \sum _{i=1}^{n}\left\{\left({\frac {\partial L}{\partial x_{i}}}-{\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {x_{i}}}}}\right)\delta x_{i}+\left({\frac {\partial L}{\partial y_{i}}}-{\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {y_{i}}}}}\right)\delta y_{i}+\left({\frac {\partial L}{\partial z_{i}}}-{\frac {\mathrm {d} }{\mathrm {d} t}}{\frac {\partial L}{\partial {\dot {z_{i}}}}}\right)\delta z_{i}\right\}=0}

これはつまり、ラグランジアンから一元的に運動方程式を導出する方法で、一部の力学の問題について計算を簡単にする方法だった[注 4]

幾何光学における変分原理であるフェルマーの原理からの類推で、古典力学において最小作用の原理(モーペルテューイの原理)が発見された。これにより、力学系の問題は、作用積分とよばれる量を最小にするような軌道をもとめる数学の問題になった。

こうして座標一般座標に拡張され、ラグランジュ方程式が導き出された[注 5]。 さらに、ラグランジアンから一般運動量を定義し、座標と運動量ルジャンドル変換によって、ハミルトン力学が導かれた[注 6][注 7]

方程式の一般座標化と共変性

直角座標系 x , y {\displaystyle x,y} において、質点の質量を m {\displaystyle m} 、ポテンシャル関数を V ( x , y ) {\displaystyle V(x,y)} とすると、運動方程式は、

m x ¨ = V x , {\displaystyle m{\ddot {x}}=-{\frac {\partial V}{\partial x}},} m y ¨ = V y {\displaystyle m{\ddot {y}}=-{\frac {\partial V}{\partial y}}}

と書くことができる。これはニュートンの運動方程式をそのまま表しているため見やすく、また座標系を回転してもその式の形状を変えないという性質(共変性;covariant)を持つが、直角座標系が常に便利というわけではない。例えば中心力場における運動の解析では極座標系の方が適しており、また場合によっては運動座標系で考えなくてはならないときもある。このような新しい座標変数は総称として一般化座標(generalized coordinates)と呼ぶ[7][8]

一般座標系を用いる場合、直角座標系のニュートンの運動方程式から一般座標系の運動方程式への変換などが要求されることになる。しかし、ニュートンの運動方程式はこのような一般座標系への変換に対しては一般に共変的ではないため、式の形が変わってしまう。

例として、ポテンシャル V ( r ) {\displaystyle V(r)} で表される中心力場における質量 m の質点の運動を考える。運動は初期位置と初期運動量が決定する平面上で行われることになる。その平面上の直角座標系を x , y {\displaystyle x,y} 、極座標を r ( = x 2 + y 2 ) {\displaystyle r(={\sqrt {x^{2}+y^{2}}})} θ ( = arctan ( y x ) ) {\displaystyle \theta (=\arctan({\frac {y}{x}}))} とする。このとき、極座標系の運動方程式は、 l = m r 2 θ ˙ {\displaystyle l=mr^{2}{\dot {\theta }}} とすると

m r ¨ = r ( V + l 2 2 m r 2 ) {\displaystyle m{\ddot {r}}=-{\frac {\partial }{\partial r}}\left(V+{\frac {l^{2}}{2mr^{2}}}\right)}
l ˙ = 0 {\displaystyle {\dot {l}}=0}

となる。これは直角座標系におけるニュートンの運動方程式の形とは形式的に全く異なる(共変性を持たない)。

このニュートンの運動方程式の一般座標変換に対して共変性を持たないという欠点が解析力学の出発点である。つまり解析力学は一般座標について式の形を変えない運動方程式の表現をもたらすことになるが、その要求を満たすものの一つがオイラー=ラグランジュ方程式である。

オイラー=ラグランジュ方程式の共変性

簡単のために、前節に引き続き2次元平面上で考える。適当な一般化座標を q1, q2 として、直角座標 x, y を一般化座標で

x = x ( q 1 , q 2 ) y = y ( q 1 , q 2 ) {\displaystyle {\begin{aligned}x&=x(q_{1},q_{2})\\y&=y(q_{1},q_{2})\end{aligned}}}

とおく (ここでは時間 t に陽には依存しないものとする)。両辺を時間 t で微分すると次の式を得る:

x ˙ = x q 1 q ˙ 1 + x q 2 q ˙ 2 , {\displaystyle {\dot {x}}={\frac {\partial x}{\partial q_{1}}}{\dot {q}}_{1}+{\frac {\partial x}{\partial q_{2}}}{\dot {q}}_{2},} y ˙ = y q 1 q ˙ 1 + y q 2 q ˙ 2 {\displaystyle {\dot {y}}={\frac {\partial y}{\partial q_{1}}}{\dot {q}}_{1}+{\frac {\partial y}{\partial q_{2}}}{\dot {q}}_{2}}

従って ·x, ·y に対して ·q1, ·q2 は線形であり、次の式が成り立つ:

x ˙ q ˙ i = x q i , y ˙ q ˙ i = y q i ( i = 1 , 2 ) {\displaystyle {\frac {\partial {\dot {x}}}{\partial {\dot {q}}_{i}}}={\frac {\partial x}{\partial q_{i}}},\;\;{\frac {\partial {\dot {y}}}{\partial {\dot {q}}_{i}}}={\frac {\partial y}{\partial q_{i}}}\;\;\;(i=1,2)}

ラグランジアン L に対して、直角座標 x, y でのオイラー=ラグランジュ方程式

d d t ( L x ˙ ) L x = 0 d d t ( L y ˙ ) L y = 0 {\displaystyle {\begin{aligned}{\frac {d}{dt}}\left({\frac {\partial L}{\partial {\dot {x}}}}\right)-{\frac {\partial L}{\partial x}}&=0\\{\frac {d}{dt}}\left({\frac {\partial L}{\partial {\dot {y}}}}\right)-{\frac {\partial L}{\partial y}}&=0\end{aligned}}}

であるが、このとき i = 1, 2 のそれぞれについて

d d t ( L q ˙ i ) = d d t ( L x ˙ x ˙ q ˙ i + L y ˙ y ˙ q ˙ i ) = d d t ( L x ˙ x q i + L y ˙ y q i ) = d d t ( L x ˙ ) x q i + d d t ( L y ˙ ) y q i + L x ˙ x ˙ q i + L y ˙ y ˙ q i L q i = L x x q i + L y y q i + L x ˙ x ˙ q i + L x ˙ x ˙ q i {\displaystyle {\begin{aligned}\mathop {\frac {d}{dt}} \left({\frac {\partial L}{\partial {\dot {q}}_{i}}}\right)&=\mathop {\frac {d}{dt}} \left({\frac {\partial L}{\partial {\dot {x}}}}{\frac {\partial {\dot {x}}}{\partial {\dot {q}}_{i}}}+{\frac {\partial L}{\partial {\dot {y}}}}{\frac {\partial {\dot {y}}}{\partial {\dot {q}}_{i}}}\right)\\&=\mathop {\frac {d}{dt}} \left({\frac {\partial L}{\partial {\dot {x}}}}{\frac {\partial x}{\partial q_{i}}}+{\frac {\partial L}{\partial {\dot {y}}}}{\frac {\partial y}{\partial q_{i}}}\right)\\&=\mathop {\frac {d}{dt}} \left({\frac {\partial L}{\partial {\dot {x}}}}\right){\frac {\partial x}{\partial q_{i}}}+\mathop {\frac {d}{dt}} \left({\frac {\partial L}{\partial {\dot {y}}}}\right){\frac {\partial y}{\partial q_{i}}}+{\frac {\partial L}{\partial {\dot {x}}}}{\frac {\partial {\dot {x}}}{\partial q_{i}}}+{\frac {\partial L}{\partial {\dot {y}}}}{\frac {\partial {\dot {y}}}{\partial q_{i}}}\\{\frac {\partial L}{\partial q_{i}}}&={\frac {\partial L}{\partial x}}{\frac {\partial x}{\partial q_{i}}}+{\frac {\partial L}{\partial y}}{\frac {\partial y}{\partial q_{i}}}+{\frac {\partial L}{\partial {\dot {x}}}}{\frac {\partial {\dot {x}}}{\partial q_{i}}}+{\frac {\partial L}{\partial {\dot {x}}}}{\frac {\partial {\dot {x}}}{\partial q_{i}}}\end{aligned}}}

d d t ( L q ˙ i ) L q i = 0 {\displaystyle \therefore \mathop {\frac {d}{dt}} \left({\frac {\partial L}{\partial {\dot {q}}_{i}}}\right)-{\frac {\partial L}{\partial q_{i}}}=0}

より、一般化座標 q1, q2 でのオイラー=ラグランジュ方程式も同様に成り立つことが示される。座標変換が微分同相であるならば逆も成り立つため、オイラー=ラグランジュ方程式の共変性が示される。

脚注

[脚注の使い方]

注釈

  1. ^ 解析力学の体系は基本的にはラグランジュ力学ハミルトン力学により構成される。大貫義郎 「まえがき」『解析力学』 岩波書店、1987年
  2. ^ ここで、空間に固定したデカルト座標系で静止する n 個の質点の内 i 番目の座標を ( x i , y i , z i ) {\displaystyle (x_{i},y_{i},z_{i})} 、その質点にかかる力の合力を ( X i , Y i , Z i ) {\displaystyle (X_{i},Y_{i},Z_{i})} としている。参考 山内(1959) p.149
  3. ^ 仮想仕事の原理のときと同様に、空間に固定したデカルト座標系で運動する n 個の質点の内 i 番目の座標を ( x i , y i , z i ) {\displaystyle (x_{i},y_{i},z_{i})} 、その質点にかかる力の合力を ( F x i , F y i , F z i ) {\displaystyle (F_{x_{i}},F_{y_{i}},F_{z_{i}})} とする。さらに i 番目の質点の質量を m i {\displaystyle m_{i}} とする。なお、釣り合いのために加えられる力 m r {\displaystyle -m\mathbf {r} } を慣性抵抗(force of inertia)と呼ぶ。 参考 山内(1959) p.158, Lanczos(1970) p.88
  4. ^ マッハも次のように述べている。
    "ここに引用された簡単な諸例は、困難な点をもたず、解析力学の操作の意味を説明するのに十分である。解析力学から力学現象の本性についての新しい原理的解明を期待してはならない。むしろ原理的認識は、本質的には、解析力学の構築が考えられうる以前に完結していなければならない。解析力学は問題のもっとも簡単な実用的な克服だけを目的としている。この関係を見誤る人には、この場合にも本質的には経済的意味をもつラグランジュの偉大な業績は理解されずに終わるであろう。"
    マッハ(1933) 下巻 p.260から。
  5. ^ ラグランジュ形式は微分幾何学とも相性がよく、相対性理論の分野では必須である。
  6. ^ ハミルトン形式はその後の量子力学とくに行列力学へと続く。
  7. ^ ラグランジュ方程式は微分方程式を与えるのに対して、ハミルトンの正準方程式積分を与える。さらにこれから、ハミルトン・ヤコビの偏微分方程式が得られる。

出典

  1. ^ フィールツ 1977 付録 p.112
  2. ^ フィールツ 1977 付録 p.134
  3. ^ フィールツ 1977付録 p.137
  4. ^ 広重 1968, p. 109
  5. ^ フィールツ 1977付録 p.149
  6. ^ フィールツ 1977 付録 p.150,154-156
  7. ^ 並木 1991, p. 64
  8. ^ 小出, 昭一郎『解析力学』岩波書店、Tōkyō-to Chiyoda-ku、2017年。ISBN 978-4-00-710221-9。OCLC 1226412674。https://www.worldcat.org/oclc/1226412674 

関連項目

ウィキブックスに解析力学関連の解説書・教科書があります。

参考文献

洋書

  • Cornelius Lanczos (1970). The variational principles of mechanics (4th ed.). Dover publications, inc. 
  • Analytical Mechanics, L.N. Hand, J.D. Finch, en:Cambridge University Press, 2008, ISBN 978-0-521-57572-0
  • Classical Mechanics, T.W.B. Kibble, European Physics Series, McGraw-Hill (UK), 1973, ISBN 0-07-084018-0
  • Arnolʹd, VI (1989). Mathematical methods of classical mechanics (2nd ed.). Springer. ISBN 978-0-387-96890-2.
  • Schaub, H., & Junkins, J. L. (2005). Analytical mechanics of space systems. American Institute of Aeronautics and Astronautics.
  • Lurie, A. I. (2013). Analytical mechanics. en:Springer Science & Business Media.
  • Libermann, P., & Marle, C. M. (2012). Symplectic geometry and analytical mechanics. en:Springer Science & Business Media.
  • De León, M., & Rodrigues, P. R. (2011). Methods of differential geometry in analytical mechanics. Elsevier.
  • Fasano, A., & Marmi, S. (2006). Analytical mechanics: an introduction. OUP Oxford.
  • Johns, O. (2011). Analytical mechanics for relativity and quantum mechanics. OUP Oxford.

和書

  • 山内 恭彦『一般力学』(増補第三版)岩波書店、1959年。 
  • 広重, 徹『物理学史I』 5巻、培風館〈新物理学シリーズ〉、1968年。 
  • フィールツ, M. 著、喜多 秀次,田村 松平(訳) 編『力学の発展史』みすず書房、1977年。 (付録にラグランジュ(1788)『解析力学』の静力学の部・動力学の部の各部の第1章の訳出がある)
  • エリ・デ・ランダウ,イェ・エム・リフシッツ『力学』(増訂第3版)東京図書〈ランダウ=リフシッツ理論物理学教程〉、1977年。 
  • 並木, 美喜雄『解析力学』丸善出版〈パリティ物理学コース〉、1991年。 
  • 山本, 義隆『解析力学』朝倉書店、1998年。ISBN 9784254136715。OCLC 287649730。 
  • エルンスト マッハ 著、岩野秀明(訳) 編『マッハ力学史 ー古典力学の発展と批判ー』 上・下(原書第九版)、筑摩書房、2006年。 
物理学の分野
古典・量子
研究方法
基礎理論
研究対象
境界領域
その他
  • カテゴリ カテゴリ
スタブアイコン

この項目は、自然科学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(Portal:自然科学)。

  • 表示
  • 編集
典拠管理データベース: 国立図書館 ウィキデータを編集
  • ドイツ
  • イスラエル
  • 日本
  • チェコ